Teaching London Computing

Programming for GCSE

Topic 5.1: Computer Components
Aims

- Overview of computer components
- Example: Raspberry Pi
- The Universal Machine
- Performance: Clocks and Cores
From the specification

<table>
<thead>
<tr>
<th>OCR GCSE Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain how common characteristics of CPUs such as clock speed, cache size and number of cores affect their performance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AQA GCSE Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand how different components link to a processor (ROM, RAM, I/O, Storage, etc)</td>
</tr>
<tr>
<td>Be able to explain the effect of common CPU characteristics on the performance of the processor. These should include clock speed, number of cores …</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AQA GCSE Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be able to categorise devices as input or output depending on their function</td>
</tr>
</tbody>
</table>
COMPUTER COMPONENTS
Computers

- Principal components of a computer
 - Processor
 - Memory
 - Input and Output
Processor

- The part that does the calculation
CPU

- Instructions and data read from memory
- Results written to memory
Graphics Processing Unit (GPU)

- Another computer
 - Separate card → same chip

- Best for graphics calculations
 - Games
 - Frame rate
Memory

- Lots of different types
- Volatile versus permanent
- Size and performance
Motherboard

• Joins everything together
• Standards

• Wires inside
Interface Devices and Cards

- ISA bus Ethernet card
- PCI sound card
- Sound blaster live!
Raspberry Pi

- Complete small computer
- Similar to a mobile phone
USB sockets
Ethernet controller
GPIO
Power: 5V, 1 A
Ethernet socket
USB sockets
Audio

DSI Display I/F

Composite video

Camera connector

HDMI socket
UNIVERSAL MACHINE

The Idea of a Stored Program Computer
What’s a Computer?

• ‘Do anything’
 • With a program
• ‘Do nothing’
 • Without a program

• Embedded computers
 • Control, toys
CLOCKS AND CORES
Clock Speed and Moore’s Law

• CPU repeats the same cycle:
 • Fetch: gets the next instructions
 • Execute: move data according to the instruction

• Clock ‘conducts’ this cycle
 • First IBM PC ~ 8MHz
 • Today ~ 2 GHz

• Greater speed → more instructions per second

• Moore’s law → smaller
 • ... in the past this has meant faster
Pipelines and Cores

• Moore’s law → more transistors

• Idea 1: pipeline
 • Like a factory
 • More instructions / sec

• Idea 2: superscalar – parallel pipelines

• Idea 3: many CPU (cores)
 • Share memory

• Multiple cores do not make 1 program faster
Summary – Computer

• Stored program computer
• Processor(s) – CPU and GPU
• Memory
 • Data and program
• Storage
• Idea of a universal machine
 • Computer + program
• Clock speed
 • 2 GHz → 2×10^9 instructions per second