Improving Computing Activities Using Semantic Waves

Paul Curzon

We will do activities live in a Google Doc. Open:

Go there now and register

teachinglondoncomputing.org/semantic-waves/

Twitter: @cs4fn
What are semantic waves?

• An educational theory by Maton (2013):
 • a simple but powerful theory of how to teach concepts.
 • successfully applied across MANY disciplines.
• We have applied it to Computing

• We draw heavily on his work, and diagrams are adapted for computing from his papers

Find out more at: legitimationcodetheory.com/

What can semantic waves do?

- A way to

 - think about what a good explanation / learning experience is
 - whether written, multimedia or spoken.
 - think about why metaphor and unplugged teaching works (and why sometimes they might not).
 - evaluate lesson plans /online resources,
 - teach students how to write good explanations.
Mastery of a subject

• To master a subject you must both

 • Master the **technical language**, and

 • Deeply **understand the abstract concepts**

• eg a phrase like “a while loop” has precise, deeply packed technical meanings to an expert programmer

• The secret to good teaching is to link

 • **abstract, technical** concepts and language to ..

 • **concrete, everyday** concepts and language
A good learning experience follows a wave pattern

- **Hard to understand**
 - Abstract Concepts, Technical Language
 - (What we are trying to explain)
 - Explain in terms of concrete things
 - Examples
 - Diagrams
 - Metaphors
 - Similies
 - Concrete things
 - Its like a …

- **Easy to understand**
 - Everyday language
 - Link back to the abstract ideas
 - Things our reader already knows well or can easily understand

Time passing as we read or listen to the explanation
Analysis of an unplugged activity (crazy characters)

Lesson Plan Steps:
- Explain you are going to use a new word – can they listen out?
- Share the learning intention.
- Say you are going to use the algorithm now.
- Read out your steps and learners draw the crazy characters. Model adding extra detail.
- Ask pupils to show what they have drawn. I didn’t expect that.
- How could you change that?
- Ask what the algorithm was. Explain what an algorithm is.

Semantic Profile Notes:
- **Signalling**: A signal that a high is coming on the semantic profile.
- **Concept Introduction**: This is what you are going to learn about.
- **Connecting**: Connecting the theory to the concrete.
- **Concrete activity**: Practical activity with high semantic gravity. Learners are adding knowledge if the meaning is connected. The extra detail adds flow.
- **Counter expectancy**: Alternative options are introduced, increasing density.
- **Staged return**: Density increases as context is reduced.
- **Packing**: Develop/reveal the definition and pack the concept.
Sketch the profile of the talk so far

The lesson plan of the talk so far:

1. Introduced the term semantic wave - a theory by Maton
2. Outline some practical things a teacher can do with it
3. Break mastery into component parts
4. Explain it in terms of a diagram
5. Discuss Crazy Characters activity
6. Give plan, Point out I’ve been following some kind of wave
7. I’m now getting you to apply it to an example.
A course grained version

Abstract Concepts
(What we are trying to explain)

Concrete things
(Things the learner can easily understand)

Everyday language

Technical Language

Time passing through the learning experience

Hard to understand

Easy to understand

intro to waves

Break into components

me explaining the wave

YOU trying to draw this wave

me giving plan and pointing out I've just been trying to follow a wave

crazy characters

me talking you through the wave diagram

what teachers can use them for
Good explanations of complex concepts have waves within waves

Time passing through the learning experience

Abstract Concepts
(What we are trying to explain)

Technical Language

Concrete things
(Things the learner can easily understand)

Everyday language

Hard to understand

Easier to understand

Easy to understand
How to provide a bad learning experience ...
Flatlining your students
(eg a lot of wikipedia...stereotypical university lectures)
For example...

“The **while** construct consists of a **block** of code and a condition/expression. The condition/expression is evaluated, and if the condition/expression is **true**, the code within the block is executed. This repeats until the condition/expression becomes **false**.” -Wikipedia.

- Is this something about buildings, spies, guillotines, people being happy or unhappy, and/or lie detectors?...
- If you didn’t know what a while construct was before you still won’t unless you are already have mastery of everything in red.
More ways than one to flatline…
how unplugged goes wrong
For example, you all know about cooking already so I’ll use a cooking example to explain

“Recipes have structure. They start with a name. They have an ingredient list first. Then the main part of the recipe is a series of instructions to follow. Instructions can tell you to keep doing something eg ‘stir the mixture until it is smooth’”

• Weren’t we learning about computing not cookery???? What has this got to do with anything?

• Done like this the recipe analogy (which is a good analogy if used well) explains nothing.
Another way to get it wrong... never repacking the concepts
Let’s explore an example unplugged activity: Teleporting Robot
Exercise

• I’ll do the activity… **You draw the waves** (if any)

• On paper or tablet or equivalent.

• I will ask you to add it or a picture of it to the google doc at the end (if you can)
Understanding what an algorithm is

By the end

• You will be able to explain the concept of an algorithm

But we will use a magic trick to do this
How many robots?
www.cs4fn.org/magic/
To do the trick...

1. Build the jigsaw with the smaller pieces on the left.
2. Count the robots and remember how many there are.
3. Mix up the pieces.
4. Rebuild the jigsaw with the smaller pieces on the right.
5. Count the robots.

A robot has disappeared.
You too can do magic ...

• See Activity 3 in the Google Doc. Do the trick yourself!

• You can download the pdf and cut out the jigsaw from
 • bit.ly/teleporting-robot-pdf or see it online at
 • bit.ly/teleporting-robot-pdf

• You can do the trick, even without knowing why it works:
 • Just carefully follow the steps.
Self-working Tricks

• Magicians call a trick like this a "self-working" trick

• Follow the steps in the right order and the trick just works
 • Even if you have no idea what you are doing

• Computer Scientists call it an algorithm
 • I wrote it in English for a human to follow
Programs

• I wrote the trick’s “algorithm” in English for a human to follow

• With programs we write algorithms in a programming language for a computer to follow

 • Computers have no idea what they are doing

 • They must have precise steps they can follow blindly

 • They can only follow algorithms

 • They have to always work
Exercise: Explain “algorithm”

- Go to the Google Doc and do activity 4.
- Explain what is meant by an algorithm illustrating your answer with an example
What is an algorithm?

• Precise instructions of how to do some specific thing
• Must be followed exactly and in the specified order.
• If done so they guarantee to do that thing correctly.

• A computational agent should be able to blindly follow the instructions
• Without ANY understanding of what they are doing or why.
• The result should still be obtained.
Exercise:
Sketch the profile

- Go to the Google Doc and do activity 5.
- Sketch the profile of the activity we just did and share your sketch in the google doc
My sketch of the profile

Hard to understand

Abstract Concepts
(What we are trying to explain)

Concrete things
(Things the learner can easily understand)

Easy to understand

Technical Language

Everyday language

Time passing through the learning experience

Learning outcome

did trick

you do trick

summary

you explain algorithm

self working trick
= algorithm

My sketch of the profile
Semantic Density: how technical the language

Semantic Gravity: how abstract/concrete the examples

Everyday Language, Abstract concepts
(eg “everything a computer does involves it following instructions written by a human”)

Technical Language, Abstract concepts
(eg “Computers follow Algorithms”)

Everyday Language, Real world examples
(eg “a pizza recipe is a set of instructions to follow to create a pizza”)

Technical Language, Real world examples
(eg “An algorithm is like a recipe”)

Experts can easily understand

Novices can easily understand

LANGUAGExEXAMPLES

Institute of Coding

Queen Mary, University of London

CS4FN
Two paths to expertise... both are needed

Semantic Gravity
- Weaker: Everyday Language, Abstract concepts
 - Giving explanations of programming concepts using everyday analogies, writing algorithms in English
- Stronger: Technical Language, Abstract concepts
 - Giving technical explanations of concepts, writing programs from technical specifications

Semantic Density
- Weaker: Everyday Language, Real world example
 - Describing everyday examples of programming concepts
- Stronger: Technical Language, Real world example
 - Giving program examples of real problems, writing real world algorithms (e.g., a Magic Trick) as pseudocode,

Adapted to apply to programming from Maton (2013)
Optical Illusion Art: A fun coding activity?

• Abstract art such as the Op Art of Bridget Riley can add a fun twist to
 • learning to code
 • learning about vector (v bitmap) graphics
• Drawing sequences of simple shapes that create optical illusions playing with our perception

cs4fn White Disks, inspired by Riley’s White Disks
How not to teach programming...

- We are going to learn to program. Type in the following code, then run it... What does it do?

- "Copy code" is thought to be a poor way to teach programming.

- What is the semantic profile of such an activity?
What the program produces

cs4fn Curves From Rectangles: inspired by Riley’s images
Down escalator with no unpacking or repacking

Abstract Concepts
(What we are trying to explain)

Concrete but technical example in technical language

See the effect of the example in the real world (the picture)

Time passing through the learning experience

Hard to understand (High density, Low gravity)

Easy to understand (Low density, High gravity)

(Things the learner can easily understand)
How can we do better?

• Activity 6 in the google doc - add your ideas for improving it and how they link to the semantic wave profile
A better semantic wave?
A better learning experience?

- Do it unplugged first: On squared paper, follow these steps to draw this picture
 - Let’s look at what you just did…
- Use a pseudocode first
- Have them create their own Op Art image/instructions… perhaps using other shapes
- Give the ready-typed in code. Ask them to read it and predict what it might do.
- Ask them to make changes and predict what will happen.

RileyStrip:
1. Rectangle, Black, 0, 0, 2, 2
2. Rectangle, Black, 3, 0, 1.9, 2
3. Rectangle, Black, 5.8, 0, 1.7, 2
4. Rectangle, Black, 8.3, 0, 1.6, 2
5. Rectangle, Black, 10.5, 0, 1.4, 2
6. Rectangle, Black, 12.3, 0, 1, 2
7. Rectangle, Black, 13.7, 0, 0.4, 2
8. Rectangle, Black, 14.5, 0, 0.4, 2
9. Rectangle, Black, 15.3, 0, 1, 2
10. Rectangle, Black, 16.7, 0, 1.4, 2
11. Rectangle, Black, 18.7, 0, 1.6, 2
12. Rectangle, Black, 21.1, 0, 1.7, 2
13. Rectangle, Black, 23.7, 0, 1.9, 2
14. Rectangle, Black, 26.6, 0, 2, 2

1. RileyStrip, 1, 1
2. RileyStrip, 3.3, 1
3. RileyStrip, 5.6, 1
4. RileyStrip, 7.9, 1
5. RileyStrip, 10.2, 1
6. RileyStrip, 12.5, 1
7. RileyStrip, 14.8, 1
8. RileyStrip, 17.1, 1
Improving activities

• Check your lesson plan (and subparts) follows a wave

 • avoid flatlining your students

 • aim for waves within waves

• Include BOTH unpacking and repacking activities

 • linking examples / everyday language to the technical language / abstract concepts.

• Make sure the students do the repacking (not just you)

• Make use of both routes to Mastery

 • via concrete examples AND via everyday language
Semantic wave analysis can improve our teaching

Thinking about Semantic Waves applied to an activity or the way that it is delivered can ...

- Help us see why a particular delivery of an activity might not work well
- Why other deliveries may be an improvement
- How both good and bad can be improved
Thank You

• Please add feedback on this session to the google doc bit.ly/CS4FN-SWIC (Activity 8)

• See our web page on Semantic Waves in Computing

 • teachinglondoncomputing.org/semantic-waves